

Benha University Faculty of Engineering Shoubra Electronic circuits (B) Page 1/2 Electrical Eng. Dept. 3rd year communication 2012-2013

Sheet (2) - Solution

1. A non-inverting amplifier has Ri of 1K Ω and R_f of 100 K Ω . Determine V_f and B if V_{out} = 5V.

$$B = \frac{R_i}{R_i + R_f} = \frac{1.0 \text{ k}\Omega}{101 \text{ k}\Omega} = 9.90 \times 10^{-3}$$
$$V_f = BV_{out} = (9.90 \times 10^{-3})5 \text{ V} = 0.0495 \text{ V} = 49.5 \text{ mV}$$

2. For the non-inverting amplifier shown in figure (1). Determine $A_{cl(NI)}$, V_{out} , and $V_{\rm f}$

- (a) $A_{cl(NI)} = \frac{1}{B} = \frac{1}{1.5 \text{ k}\Omega/561.5 \text{ k}\Omega} = 374$ (b) $V_{out} = A_{cl(NI)}V_{in} = (374)(10 \text{ mV}) = 3.74 \text{ V rms}$ (c) $V_f = \left(\frac{1.5 \text{ k}\Omega}{561.5 \text{ k}\Omega}\right) 3.74 \text{ V} = 9.99 \text{ mV rms}$
- 3. Calculate the closed loop gain for non-inverting amplifier has R_1 =4.7K Ω , R_F =47K Ω , and A_{OL} =150,000.

$$A_{cl(\text{NI})} = \frac{1}{B} = \frac{1}{4.7 \text{ k}\Omega / 51.7 \text{ k}\Omega} = 11$$

4. For an inverting amplifier with closed loop gain of -300, and R_1 of 10K Ω , calculated the value required to R_f to satisfy this gain.

$$\frac{R_f}{R_i} = A_{cl(I)}$$
$$R_f = -R_i(A_{cl(I)}) = -10 \text{ k}\Omega(-300) = 3 \text{ M}\Omega$$

5. Determine the approximate values for I_{in} , I_{f} , Vout, A_{cl} in figure (2).

Figure (2)

(a)
$$I_{in} = \frac{V_{in}}{R_{in}} = \frac{1 \text{ V}}{2.2 \text{ k}\Omega} = 455 \ \mu\text{A}$$

(b) $I_f \cong I_{in} = 455 \ \mu\text{A}$
(c) $V_{out} = -I_f R_f = -(455 \ \mu\text{A})(22 \ \text{k}\Omega) = -10 \ \text{V}$
(d) $A_{cl(I)} = -\left(\frac{R_f}{R_i}\right) = -\left(\frac{22 \ \text{k}\Omega}{2.2 \ \text{k}\Omega}\right) = -10$

6. Determine the input and output impedances for the following amplifiers of fig.3

- 7. A voltage follower is driven by a voltage source resistance of 75Ω .
 - (a) What value of compensating resistor is required for bias current and where should the resistor be placed?
 - (b) If the two input currents after compensation are $42\mu A$ and $40\mu A$. What is the output error voltage?

Dr.Rokaia Mounir

8. A particular voltage follower has an input offset voltage of 2nV. What is the output error voltage?

$$V_{\text{OUT(error)}} = A_v V_{\text{IO}} = (1)(2 \text{ nV}) = 2 \text{ nV}$$

9. What is the input offset voltage of an op-amp if a dc voltage of 35mV is measured when the input voltage is zero? The opamp's open loop gain is specified to be 200,000.

$$V_{\rm IO} = \frac{V_{\rm OUT(error)}}{A_{ol}} = \frac{35 \,\mathrm{mV}}{200,000} = 175 \,\mathrm{nV}$$

10. The midrange open-loop gain of a certain op-amp is 120dB. Negative feedback reduces this gain by 50dB. What is the closed-loop gain?

$$A_{cl} = 120 \text{ dB} - 50 \text{ dB} = 70 \text{ dB}$$

11. The upper critical frequency of an op-amp's open loop response is 200Hz. If the midrange gain is 175,000, what is the ideal gain at 200Hz? What is the actual gain? What is the op-amp's open-loop bandwidth?

The gain is ideally **175,000** at 200 Hz. The midrange dB gain is
20 log(175,000) = 105 dB
The actual gain at 200 Hz is
$$A_{\nu}(dB) = 105 dB - 3 dB = 102 dB$$

 $A_{\nu} = \log^{-1}\left(\frac{102}{20}\right) = 125,892$
 $BW_{ol} = 200 \text{ Hz}$

12. An RC lag circuit has a critical frequency of 8.5 KHz. Determine the phase shift for each frequency and plot a graph of its phase angle versus frequency.
(i) 100Hz (ii) 400Hz (iii) 850Hz (IV) 8.5 KHz (v) 25 KHz.

(a) $\theta = \tan^{-1} \left(\frac{f}{f_c} \right) = \tan^{-1} \left(\frac{100 \text{ Hz}}{8.5 \text{ kHz}} \right) = -0.674^{\circ}$
(b) $\theta = \tan^{-1} \left(\frac{f}{f_c} \right) = \tan^{-1} \left(\frac{400 \text{ Hz}}{8.5 \text{ kHz}} \right) = -2.69^{\circ}$
(c) $\theta = \tan^{-1} \left(\frac{f}{f_c} \right) = \tan^{-1} \left(\frac{850 \text{ Hz}}{8.5 \text{ kHz}} \right) = -5.71^{\circ}$
(d) $\theta = \tan^{-1} \left(\frac{f}{f_c} \right) = \tan^{-1} \left(\frac{8.5 \text{ kHz}}{8.5 \text{ kHz}} \right) = -45.0^{\circ}$
(e) $\theta = \tan^{-1} \left(\frac{f}{f_c} \right) = \tan^{-1} \left(\frac{25 \text{ kHz}}{8.5 \text{ kHz}} \right) = -71.2^{\circ}$

13. An RC lag circuit has a critical frequency of 5 KHz. If the resistance value is $1K\Omega$. What is Xc when f=3KHz.

$$\frac{f_c}{f} = \frac{X_C}{R}$$
$$X_C = \frac{Rf_c}{f} = \frac{(1.0 \text{ k}\Omega)(5 \text{ kHz})}{3 \text{ kHz}} = 1.67 \text{ k}\Omega$$

14. Determine the attenuation of an RC lag circuit with $f_c=12$ KHz for 1 KHz and 100 KHz.

$$\frac{V_{out}}{V_{in}} = \frac{1}{\sqrt{1 + \left(\frac{f}{f_c}\right)^2}} = \frac{1}{\sqrt{1 + \left(\frac{1 \text{ kHz}}{12 \text{ kHz}}\right)^2}} = 0.997$$
$$\frac{V_{out}}{V_{in}} = \frac{1}{\sqrt{1 + \left(\frac{f}{f_c}\right)^2}} = \frac{1}{\sqrt{1 + \left(\frac{100 \text{ kHz}}{12 \text{ kHz}}\right)^2}} = 0.119$$

Dr.Rokaia Mounir

15. A certain amplifier has an open-loop gain in midrange of 180,000 and an open-loop critical frequency of 1500Hz. If the attenuation of the path is 0.015, what is the closed-loop bandwidth?

$$BW_{cl} = BW_{ol}(1 + BA_{ol(mid)}) = 1500 \text{ Hz}[1 + (0.015)(180,000)] = 4.05 \text{ MH}$$

16. Given that $f_{c(ol)}=750$ Hz, $A_{ol}=89$ dB, and $f_{c(cl)}=5.5$ KHz, determine the closed loop gain in decibels.

$$A_{ol}(dB) = 89 dB$$

$$A_{ol} = 28,184$$

$$A_{cl}f_{c(cl)} = A_{ol}f_{c(ol)}$$

$$A_{cl} = \frac{A_{ol}f_{c(ol)}}{f_{c(cl)}} = \frac{(28,184)(750 \text{ Hz})}{5.5 \text{ kHz}} = 3843$$

$$A_{cl}(dB) = 20 \log(3843) = 71.7 \text{ dB}$$

17. Which of the amplifiers shown in figure (4) has the smaller Bandwidth?

(a)
$$A_{cl} = \frac{150 \text{ k}\Omega}{22 \text{ k}\Omega} = 6.8$$

 $f_{c(cl)} = \frac{A_{ol} f_{c(ol)}}{A_{cl}} = \frac{(120,000)(150 \text{ Hz})}{6.8} = 2.65 \text{ MHz}$
 $BW = f_{c(cl)} = 2.65 \text{ MHz}$
(b) $A_{cl} = \frac{1.0 \text{ M}\Omega}{10 \text{ k}\Omega} = 100$
 $f_{c(cl)} = \frac{A_{ol} f_{c(ol)}}{A_{cl}} = \frac{(195,000)(50 \text{ Hz})}{100} = 97.5 \text{ kHz}$
 $BW = f_{c(cl)} = 97.5 \text{ kHz}$

Good Luck.

Dr.Rokaia Mounir